3.682 \(\int \frac{1}{(d+e x)^{3/2} \sqrt{a+c x^2}} \, dx\)

Optimal. Leaf size=186 \[ -\frac{2 e \sqrt{a+c x^2}}{\sqrt{d+e x} \left (a e^2+c d^2\right )}-\frac{2 \sqrt{-a} \sqrt{c} \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{a+c x^2} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}} \]

[Out]

(-2*e*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*Sqrt[d + e*x]) - (2*Sqrt[-a]*Sqrt[c]*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]
*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/((c*d^2 + a*e
^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.090379, antiderivative size = 186, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {745, 21, 719, 424} \[ -\frac{2 e \sqrt{a+c x^2}}{\sqrt{d+e x} \left (a e^2+c d^2\right )}-\frac{2 \sqrt{-a} \sqrt{c} \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{a+c x^2} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)^(3/2)*Sqrt[a + c*x^2]),x]

[Out]

(-2*e*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*Sqrt[d + e*x]) - (2*Sqrt[-a]*Sqrt[c]*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]
*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/((c*d^2 + a*e
^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2])

Rule 745

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)*(a + c*x^2)^(p
 + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[c/((m + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*Simp[d*(m + 1)
- e*(m + 2*p + 3)*x, x]*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[
m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]) || (SumSimplerQ[m, 1] && IntegerQ[p]) || ILtQ
[Simplify[m + 2*p + 3], 0])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^{3/2} \sqrt{a+c x^2}} \, dx &=-\frac{2 e \sqrt{a+c x^2}}{\left (c d^2+a e^2\right ) \sqrt{d+e x}}-\frac{(2 c) \int \frac{-\frac{d}{2}-\frac{e x}{2}}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{c d^2+a e^2}\\ &=-\frac{2 e \sqrt{a+c x^2}}{\left (c d^2+a e^2\right ) \sqrt{d+e x}}+\frac{c \int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx}{c d^2+a e^2}\\ &=-\frac{2 e \sqrt{a+c x^2}}{\left (c d^2+a e^2\right ) \sqrt{d+e x}}+\frac{\left (2 a \sqrt{c} \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{\sqrt{-a} \left (c d^2+a e^2\right ) \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{a+c x^2}}\\ &=-\frac{2 e \sqrt{a+c x^2}}{\left (c d^2+a e^2\right ) \sqrt{d+e x}}-\frac{2 \sqrt{-a} \sqrt{c} \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\left (c d^2+a e^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.38786, size = 331, normalized size = 1.78 \[ -\frac{2 e \sqrt{a+c x^2}}{\sqrt{d+e x} \left (a e^2+c d^2\right )}-\frac{2 \sqrt{c} \sqrt{d+e x} \sqrt{\frac{e \left (\sqrt{a}+i \sqrt{c} x\right )}{\sqrt{a} e-i \sqrt{c} d}} \left (E\left (i \sinh ^{-1}\left (\sqrt{-\frac{\sqrt{c} (d+e x)}{\sqrt{c} d-i \sqrt{a} e}}\right )|\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )-\text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{-\frac{\sqrt{c} (d+e x)}{\sqrt{c} d-i \sqrt{a} e}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )\right )}{e \sqrt{a+c x^2} \left (\sqrt{a} e+i \sqrt{c} d\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{e \left (\sqrt{c} x+i \sqrt{a}\right )}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)^(3/2)*Sqrt[a + c*x^2]),x]

[Out]

(-2*e*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*Sqrt[d + e*x]) - (2*Sqrt[c]*Sqrt[(e*(Sqrt[a] + I*Sqrt[c]*x))/((-I)*Sqr
t[c]*d + Sqrt[a]*e)]*Sqrt[d + e*x]*(EllipticE[I*ArcSinh[Sqrt[-((Sqrt[c]*(d + e*x))/(Sqrt[c]*d - I*Sqrt[a]*e))]
], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)] - EllipticF[I*ArcSinh[Sqrt[-((Sqrt[c]*(d + e*x))/(Sqrt
[c]*d - I*Sqrt[a]*e))]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)]))/(e*(I*Sqrt[c]*d + Sqrt[a]*e)*S
qrt[(Sqrt[c]*(d + e*x))/(e*(I*Sqrt[a] + Sqrt[c]*x))]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.273, size = 655, normalized size = 3.5 \begin{align*} 2\,{\frac{\sqrt{ex+d}\sqrt{c{x}^{2}+a}}{ \left ( a{e}^{2}+c{d}^{2} \right ) e \left ( ce{x}^{3}+cd{x}^{2}+aex+ad \right ) } \left ({\it EllipticF} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ) a{e}^{2}\sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}}\sqrt{{\frac{ \left ( -cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e+cd}}}\sqrt{{\frac{ \left ( cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e-cd}}}+{\it EllipticF} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ) c{d}^{2}\sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}}\sqrt{{\frac{ \left ( -cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e+cd}}}\sqrt{{\frac{ \left ( cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e-cd}}}-{\it EllipticE} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ) a{e}^{2}\sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}}\sqrt{{\frac{ \left ( -cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e+cd}}}\sqrt{{\frac{ \left ( cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e-cd}}}-{\it EllipticE} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ) c{d}^{2}\sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}}\sqrt{{\frac{ \left ( -cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e+cd}}}\sqrt{{\frac{ \left ( cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e-cd}}}-c{e}^{2}{x}^{2}-a{e}^{2} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(3/2)/(c*x^2+a)^(1/2),x)

[Out]

2*(EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*e^2
*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2)
)*e/((-a*c)^(1/2)*e-c*d))^(1/2)+EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*
c)^(1/2)*e+c*d))^(1/2))*c*d^2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c
*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)
,(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*e^2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*
c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-EllipticE((-(e*x+d)*
c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c*d^2*(-(e*x+d)*c/((-a*c)^(1
/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d
))^(1/2)-c*e^2*x^2-a*e^2)*(c*x^2+a)^(1/2)*(e*x+d)^(1/2)/e/(a*e^2+c*d^2)/(c*e*x^3+c*d*x^2+a*e*x+a*d)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + a}{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(e*x + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + a} \sqrt{e x + d}}{c e^{2} x^{4} + 2 \, c d e x^{3} + 2 \, a d e x + a d^{2} +{\left (c d^{2} + a e^{2}\right )} x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)*sqrt(e*x + d)/(c*e^2*x^4 + 2*c*d*e*x^3 + 2*a*d*e*x + a*d^2 + (c*d^2 + a*e^2)*x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + c x^{2}} \left (d + e x\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(3/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(sqrt(a + c*x**2)*(d + e*x)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + a}{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(e*x + d)^(3/2)), x)